
www.manaraa.com

An application of games-based learning within
software engineering

Thomas M. Connolly, Mark Stansfield and Thomas Hainey

Thomas Connolly is a professor in the School of Computing at the University of Paisley and chair of the
ICT in Education interdisciplinary Research Group. His specialisms are online learning, online games-
based learning and database systems. Dr Mark Stansfield is a senior lecturer in the School of Computing
at the University of Paisley. Thomas Hainey is in the second year of his doctoral studies in games-based
learning. Address for correspondence: School of Computing, University of Paisley, High Street, Paisley,
PA1 2BE. Email: conn-ci0@wpmail.paisley.ac.uk

Abstract
For some time now, computer games have played an important role in both
children and adults’ leisure activities. While there has been much written on
the negative aspects of computer games, it has also been recognised that they
have potential advantages and benefits. There is no doubt that computer games
are highly engaging and incorporate features that are extremely compelling.
It is these highly engaging features of computer games that have attracted
the interests of educationalists. The use of games-based learning has been
growing for many years now; however, within software engineering, there is
still a dearth of empirical evidence to support this approach. In this paper, we
examine the literature on the use of computer games to teach software engi-
neering concepts and describe a computer game we have been developing to
teach these concepts.

Introduction
It is generally accepted that computer games are an extremely motivating and engaging
medium and represent a new form of popular culture. In addition, there is a growing
recognition of the potential benefits that can be gained in using computer games within
teaching and learning, although there are still many critics of this approach. We have
been attempting to use a games-based learning approach to support the teaching of
requirements collection and analysis within a software engineering course in higher
education for some years now (Connolly, McLellan, Stansfield, Ramsay & Sutherland,
2004). Recently we have teamed up with a Scottish games-based learning company to
develop an expanded version of the game for both the academic and training commu-
nities. In this paper, we examine the literature on the use of games-based learning

British Journal of Educational Technology Vol 38 No 3 2007 416–428
doi:10.1111/j.1467-8535.2007.00706.x

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

mailto:ci0@wpmail.paisley.ac.uk


www.manaraa.com

within software engineering and, in particular, attempt to identify what empirical evi-
dence exists within this literature to support this approach. We also examine some of
the issues underlying the teaching of the abstract and complex domain of requirements
collection and analysis and, more generally, software engineering. We then discuss the
high-level requirements for our game and provide an overview of the gameplay and an
outline subsystem design.

Previous research
Literature search
There is a significant amount of research in the application of computer games to
teaching and learning. As our primary focus was the application of games-based learn-
ing to software engineering in tertiary education, and as we were particularly interested
to identify the existence of empirical evidence to support its usage in this discipline, we
undertook an extensive literature search during the first half of 2006. As technology,
and specifically computer games, have changed significantly in the last decade, we
decided to look for evidence from 1996 onwards. The literature review was carried out
using various electronic databases: ACM, ScienceDirect, EBSCO (consisting of Psychol-
ogy and Behavioural Science, PsycINFO, SocINDEX, Library, Information Science and
Technology Abstracts, CINAHL), ERIC, IngentaConnect, Infotrac (Expanded Academic
ASAP) and Emerald. The following search terms were used:

(‘computer games’ OR ‘video games’ OR ‘serious games’ OR ‘simulation games’ OR
‘games-based learning’ OR MMOG OR MMORPG OR MUD OR ‘online games’)
AND (education OR learning)

As we were specifically interested in the use of computer games for teaching and
learning, we excluded approaches to teaching software engineering using simulations
such as SESAM (Drappa & Ludewig, 2000). We identified a number of papers in which
students were given the task of developing simple computer games or in which students
were given a computer game-style interface to engage and motivate (for example,
Bayliss & Strout, 2006; Chamillard, 2006); however, these were excluded from consid-
eration as the computer game was not the main pedagogical instrument of teaching
and learning. We also excluded papers that discussed the development of units or
complete courses in computer games (for example, Sweedyk, deLaet, Slattery & Kuffner,
2005). Finally, we also excluded noncomputer-based games such as card games (for
example, Hamey, 2003). Table 1 shows the papers that we found from the literature
search, the application area and an indication of whether or not the paper contained an
evaluation. The search highlighted four reasonably mature games:

• KM QUEST in the area of knowledge management (Leemkuil & de Hoog, 2005;
Leemkuil, de Jong, de Hoog & Christoph, 2003);

• Open Software Solutions (Sharp & Hall, 2000);
• The Incredible Manager (Dantas, Barros & Werner, 2004, 2005);
• SimSE (Oh Navarro and Van der Hoek, 2004, 2005a, 2005b; Oh Navarro et al,

2003).

Games-based learning within software engineering 417

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

Table 1: Games-based learning in computing science/software engineering/information systems

Authors Area Evaluation

Connolly and Stansfield
(in press)

Requirements analysis No evaluation

Shaw and Dermoudy (2005) Project management of
software development
process

Small quantitative evaluation
(n = not specified).

Wang (2005) ‘Cyber War’—a multi-step
cyber attack or cyber
defense protection

No evaluation

Chua (2005) Knowledge management Pre-posttest (n = 32); small
increase in knowledge,
skills and attitude.

Veronese, Barros and Werner
(2005)

Framework to support the
development of
educational games based
on simulation models

No evaluation

Waraich (2004) Binary arithmetic and logic
gates

Quantitative; pre/posttesting
(n = 15); showed improved
performance using games
approach

Ford and Minsker (2003) Tree traversal techniques and
iterative and recursive
traversal algorithms

No evaluation

Sharp and Hall (2000) Interactive multimedia
simulation of a software
house Open Software
Solutions

First run: MUMMS usability
analysis (n = 31); second
run: questionnaire
(n = 354; 36% response);
only 7% thought software
useful

Martin (2000) Information systems
development

No evaluation

KM QUEST

Leemkuil, de Jong, de Hoog
and Christoph (2003)

Knowledge management Evaluated usability, behaviour
of players/models and
acceptability (n = 41:
18 managers and 23
students); however, no
statistics provided

Leemkuil and de Hoog (2005) Investigation of effectiveness
of several learning support
tools in gaming
environment

Pre-posttest analysis (n = 29);
tested importance of advice
rather than any increase in
learning brought about by
game

The incredible manager

Dantas, Barros and Werner
(2005)

Software project management Small qualitative evaluation
(n = 24)

Dantas, Barros and Werner
(2004)

Software project management Small (five questions) survey
(n = 15)

418 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

However, it can be seen that the evaluation of the impact of the games-based learning
approach is severely limited and in many cases non-existent. Moreover, there are no
longitudinal studies. Given that games-based learning is not a new approach to teach-
ing and learning, this is a very worrying situation and is a clear indication that more
research needs to be carried out to evaluate the use of this approach and, in particular,
longitudinal studies are required. While we were not looking in detail outside our
discipline, we did not see much evidence of longitudinal studies in games-based learn-
ing within higher education.

Requirements collection and analysis and software engineering
Software engineering has been described as a ‘wicked problem’ characterised by incom-
plete, contradictory and changing requirements, and solutions that are often difficult to
recognise as such because of complex interdependencies (DeGrace & Hulet Stahl,
1998). According to (Armarego, 2002), there is an educational dilemma in teaching
such problems in software engineering because:

• Complexity is added rather than reduced with an increased understanding of the
problem.

• Metacognitive strategies are fundamental to the process.
• A rich background of knowledge and intuition is needed for effective problem solving.
• A breadth of experience is necessary so that similarities and differences with past

strategies are used to deal with new situations.

Table 1: Continued

Authors Area Evaluation

SimSE

Birkhölzer, Oh Navarro and
Van der Hoek (2005)

Proposal for students to build
a new software process
simulation model using
SimSE

No evaluation

Oh Navarro and Van der
Hoek (2005a)

SimSE process model No evaluation

Oh Navarro and Van der
Hoek (2005b)

Small (eight questions)
questionnaire (n = 29)

Oh Navarro and Van der
Hoek (2004)

Software engineering
simulation

No evaluation

Oh Navarro, Baker and Van
der Hoek (2003)

No evaluation of SimSE

Oh and Van der Hoek
(2001a)

Economic cost model for
software engineering

No evaluation

Oh and Van der Hoek
(2001b)

Proposal to develop SimSE No evaluation

Oh (2001) Proposal to develop SimSE No evaluation

Games-based learning within software engineering 419

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

Oh and Van der Hoek (2001b) identify a number of other issues that complicate the
teaching of the software process:

• Software development is non-linear: activities, tasks and phases are repeated, and mul-
tiple events happen at the same time. Managing two similar projects in the same way
may not produce the same outcome because of the presence of several (possibly
unexpected) factors (eg, technical advances, client behaviours or expectations).

• Software development involves several intermediate steps and continuous choices between
multiple, viable alternatives: even with careful planning, not all events that can occur
can be anticipated at the start of a project. Difficult decisions must be made, tradeoffs
must be considered and conflicts must be handled.

• Software development may exhibit dramatic effects with nonobvious causes: while software
development has several cause-and-effect relationships (eg, it is more cost-effective to
identify flaws in the earlier phases of development than to identify them in the later
phases), there are other situations that may arise in which the cause is not so appar-
ent. For example, Brook’s Law states that adding people to a project that is already late
typically makes that project later.

• Software engineering involves multiple stakeholders: clients and nondevelopment person-
nel in an organisation all make decisions that impact development.

• Software engineering often has multiple, conflicting goals: software development includes
tradeoffs between such things as quality versus cost, timeliness versus thoroughness,
or reliability versus performance.

Two further issues that arise with teaching software development that we are interested
in taking into consideration in any learning environment we develop are:

• Communication: software engineers must be able to communicate, both verbally and
in writing, with staff internal to the project (project manager, team leaders, analysts,
designers, developers, testers, quality assurance) as well as external stakeholders.

• Pedagogical praxis: Shaffer (2004a) proposes a theory of ‘pedagogical praxis’, which
links learning and doing within an extended framework of communities of practice
(Lave, 1991; Lave & Wenger, 1991). Pedagogical praxis is based on the concept that
different professions (for example, lawyers, doctors, software engineers) have differ-
ent epistemologies (epistemic frames)—different ways of knowing, of deciding what
is worth knowing and of adding to the collective body of knowledge and under-
standing. For a particular community, the epistemic frames define ‘knowing where
to begin looking and asking questions, knowing what constitutes appropriate evi-
dence to consider or information to assess, knowing how to go about gathering that
evidence, and knowing when to draw a conclusion and/or move on to a different
issue’ (Shaffer, 2004b, p. 4). The implementation of pedagogical praxis requires a
faithful recreation of the professional community, one that is ‘thickly authentic’;
that is, one where: (1) learning is personally meaningful for the learner; (2) learn-
ing relates to the real world outside the classroom; (3) learning provides an oppor-
tunity to think in the modes of a particular profession; and (4) learning where
the means of assessment reflect the learning process (Shaffer & Resnick, 1999).

420 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

Connolly and Begg (2006) have suggested that the term thickly authentic be
extended to incorporate: (5) learning using the tools and practices of the modern-
day professional.

According to Schön (1983, 1987), the following are some of the key problems in
teaching an abstract subject of this nature:

• It is learnable but not didactically or discursively teachable: it can be learned only in
and through practical operations.

• It is a holistic skill and parts cannot be learned in isolation but by experiencing it in
action.

• It depends upon the ability to recognise desirable and undesirable qualities of the
discovered world. However, this recognition is not something that can be described to
learners; instead, it must be learned by doing.

• It is a creative process in which a designer comes to see and do things in new ways.
Therefore, no prior description of it can take the place of learning by doing.

Students often have a considerable difficulty comprehending implementation-
independent issues and analysing problems where there is no single, simple, well-
known, or correct solution (Connolly & Begg, 2006). They have difficulty handling
ambiguity and vagueness and they can also display an inability to translate tutorial
examples to other domains with analogous scenarios, betraying a lack of transferable
analytical and problem-solving skills (Connolly & Stansfield, in press). Kriz (2003)
highlights the point that the majority of students are not competent enough to put their
knowledge into practice and they are unable to cope successfully with the everyday
tasks associated with the practice of their chosen field. These problems can lead to
confusion, a lack of self-confidence and a lack of motivation to continue.

Many of the previously discussed characteristics make teaching requirements collec-
tion and analysis and, more generally, the software development process, problematic
using didactic approaches to teaching and learning, and the practical experience pro-
vided falls far short of what a student can expect ‘in the real world’. Instead, these issues
suggest that students can only learn about software engineering by doing software
engineering and relying less on overt lecturing and traditional teaching. This approach
requires a shift in the roles of both students and teachers, with the student becoming an
apprentice, exploring and learning about the problem in the presence of peers (who
may know more or less about the topic at hand) and the teacher moving from being the
‘knowledgeable other’ towards becoming a facilitator who manages the context and
setting and assists students in developing an understanding of the material at hand
(Koehler & Mishra, 2005).

We advocate an alternative teaching paradigm for software engineering based on con-
structivism. Cognitive constructivism views learning as an active process in which
learners construct new ideas or concepts based upon their current/past knowledge. The
learner selects and transforms information, constructs hypotheses and makes deci-
sions, relying on a cognitive structure to do so (Piaget, 1968). Social constructivism,

Games-based learning within software engineering 421

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

seen as a variant of cognitive constructivism, emphasises that human intelligence
originates in our culture. Individual cognitive gain occurs first in interaction with other
people and in the next phase within the individual (Forman & McPhail, 1993). These
two models are not mutually exclusive but merely focus upon different aspects of the
learning process. In fact, Illeris (2003) believes that all learning includes three dimen-
sions, namely the cognitive dimension of knowledge and skills, the emotional dimen-
sion of feelings and motivation, and the social dimension of communication and
cooperation—‘all of which are embedded in a societally situated context’.

SDSim game
The development of the SDSim game is being underpinned by Participatory Design
principles, with users and other stakeholders playing a prominent role in all the stages
relating to design, development and evaluation. The benefits of Participatory Design are
that it can provide better project control, better communication, more satisfied users
and participants, lessens the need for a costly corrective action post implementation,
and can provide more innovative and creative solutions than might have otherwise
been possible (Cherry & Macredie, 1999; Kensing & Blomberg, 1998). To support the
design, development and evaluation of the game, it was decided to establish a steering
committee comprising senior representatives from industry and commerce, a number
of academic representatives, the project managers and the developers of the game. By
drawing upon the expertise and views of senior managers from industry and com-
merce, it is hoped that the game will have a greater degree of relevance and significance
to a wider audience other than students in higher education. In addition, it is hoped
that the SDSim game will utilise and develop a wider range of skills and knowledge that
might be transferable across a wider section of industry and commerce. We now discuss
the high-level objectives of the game, the game play and then provide an outline design
of the game itself.

High-level objectives
The games-based learning environment should provide a rich learning experience
through the creation of a range of project scenarios that will:

• promote an engineering ethos that emphasises fitness for purpose as the guiding
principle in the design, development and assessment of information systems and their
components;

• enable the learner to take a disciplined approach to requirements collection and
analysis, and to the high-level specification, design and implementation of informa-
tion systems and their components;

• enable the learner to handle complexity, vagueness and ambiguity during the project;
• enable the learner to develop a range of project-management skills;
• assist the learner in developing analytical and problem-solving skills and transferable

skills;
• assist the learner in developing the skills required for both autonomous practice and

team working;
• assist the learner in developing reflection and metacognitive strategies.

422 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

In a discussion with the advisory group, the following requirements were identified:

• The game will be targeted at both university students in a computing-related subject
and also the professional training market.

• The game must support a number of players carrying out different roles (for example,
analyst, developer, project manager) as well as a facilitator. Communication between
players should be supported.

• The facilitator will be able to see what the players are doing, will be able to intervene
in the game (for example, to modify the frequency of new projects, to modify the
number of people assigned to a project) and will be able to call team meetings to
discuss issues that have arisen in the team’s play.

• Ideally, in a team-based activity, when a player is not available, the game (AI) should
play that role.

• The game must be scenario based to allow the players access to a range of project
scenarios to provide practical experience.

• The game must have a reasonably authentic underlying business model to model
clients, projects, staff, suppliers and competitors. The model should take cognisance of
a range of project variables such as project budget, time, staff, staff specialisations,
staff costs and resource costs. These variables would be scenario specific.

• The game should run in an online environment.
• Gameplay should be recorded wherever possible to support debriefing, postgame

analysis and evaluation.

Gameplay
The basic idea of the game is for the team (comprising one or more players) to manage
and deliver a number of software development projects. Each player has a specific role,
such as project manager, systems analyst, systems designer or team leader. A bank of
scenarios have been created based on case studies the authors have been using for many
years in teaching and learning; for example, the DreamHome Estate Agency (Connolly &
Begg, 2005), the StayHome Online DVD Rentals company and the Perfect Pets Veterinary
Clinic (Connolly & Begg, 2002), the Blackwood Library and the Fair Winds Marina (Con-
nolly et al, 2004). Each scenario has an underlying business model; for example, there
will be a budget for the delivery of the project, a set timescale for the delivery of the
project and a set of resources (for example, staff with specified technical specilisations)
that can be used on the project. Additional resources can be brought in for a project,
although this will have a cost and timescale (delay) associated with it. The project
manager has the overall responsibility for the delivery of each project on budget and on
time and is given a short brief for each project. Communication is one of the key aspects
of the game, and the project manager must communicate relevant details of the project
to the other players. This will be done using a message metaphor—any player can
communicate with any other player(s) by sending a message. Players have a message
board that indicates whether there are any unread messages or not.

The player(s) assigned to the system analyst role has to identify the requirements for the
project. To do this, the player must move through the game and ‘talk’ to the nonplayer
characters (NPCs) in the game. In addition, there are objects in the game that can also

Games-based learning within software engineering 423

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

convey relevant information when found (for example, a filing cabinet may convey
requirements). For the prototype game, we are using written transcripts in place of NPC
speech. We hope shortly to use lip synching within the game to have the NPCs ‘talk’ to
the system analyst. Each NPC’s ‘speech’ will contain some general background details
and a number of requirements (the analyst has to distinguish the requirements from
the general details). Visiting the same NPC may generate the same speech or a new
speech. Each speech will generate a transcript that the analyst can visit at any point in
the game. The transcript is presented as a numbered list of requirements. During the
play, the analyst can use the transcripts to produce an initial ‘wishlist’ of requirements,
which can be refined until such time as the analyst believes all requirements have been
identified, at which point the analyst can send the completed requirements to the
project manager. The project manager now has two choices: send the requirements to
the designer to produce an outline high-level design or consider the requirements to be
incorrect and ask the analyst to rework the requirements (asking for rework will have a
‘cost’ associated with it).

During this period, the designer will be provided with some background information
relevant to the design phase (for example, high-level components that the company
might have developed previously, technical experience of the staff, technical resources
the designer has access to, and software and hardware that can be bought externally).
Upon receiving the requirements, the designer must produce a high-level design that
addresses the clients’ requirements and must identify what will be developed ‘in-house’
and what software/hardware will be bought in. In addition, the designer must provide
some estimate of cost and timescale to implement the system. Again, the design will go
back to the project manager to accept or reject (in which case the design must be
reworked by the designer at ‘cost’).

The implementation phase is handled by the team leader who is given a brief by the
project manager (high-level design, available budget, available staff). The team leader is
responsible for the delivery of the implementation phase. However, during this period,
the team leader may have to handle a number of planned events (such as staff holidays)
and unexpected events (such as staff becoming ill, staff leaving and some activities
taking longer than planned). Some events the team leader may be able to handle
autonomously within the remit provided; however, with others, the team leader may
need to consult the project manager to seek a solution.

The facilitator will have access to the gameplay and will be able to intervene during the
play. One intervention is to call a (physical or virtual) team meeting because of prob-
lems identified with the running of the project. There are a number of other interven-
tions such as changing the requirements during the design or implementation phase,
reducing the number of staff available for the project, making staff go off sick and
making staff leave the company.

Game design
The game is based on the traditional multi-client/single-server architecture. The sub-
system design is shown in Figure 1:

424 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

• The Scenario Builder is an offline utility to allow us to create and update the game
scenarios. These scenarios are stored in the server-side database.

• The Postgame Analysis is a second offline utility to allow us to provide data to the
facilitator on how the team has performed. The utility will also provide us with data
to evaluate the impact of the game and to eventually produce longitudinal analyses.

• The Game Server consists of four main subsystems:
• The Comms subsystem, which allows players to communicate with each other;
• The Visualisation/User Interface, which handles what the players see on the screen

and what they can do.
• The Business Model, which implements both the general business rules and the

business rules specific to each scenario. This will be loosely based on the SESAM
model (Mandl-Striegnitz, 2001).

• The Game AI, which implements ‘missing players’. At the time of writing, this
subsystem has not been fully designed.

The input to date from the advisory group has been extremely useful and has
helped shape the design of the game. We are currently implementing a prototype of
the game, and an early version of the full system is due for completion in early 2007.

Conclusions
In this paper, we have examined previous approaches to the application of games-
based learning to software engineering and have found a significant dearth of empiri-
cal research to support this approach. Software engineering has been described as a
‘wicked problem’ characterised by incomplete, contradictory, and changing require-
ments and solutions that are often difficult to recognise as such because of complex
interdependencies. Other issues that complicate the teaching of software engineering
are that software development is non-linear, it involves several intermediate steps and
choices between multiple, viable alternatives, it may exhibit dramatic effects with
nonobvious causes and it involves multiple stakeholders. Finally, we have described

Game Server

Scenario 
builder 

Scenario 

Game AI 
Visualisation/ 
user interface 

Comms 
subsystem 

Business 
model 

Postgame 
analysis 

Players

Facilitator SDSim developers

Figure 1: Internal subsystems of the SDSim game

Games-based learning within software engineering 425

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

the design of a new games-based learning application aimed at the teaching of
requirements collection and analysis, design and project management aimed at both
the academic and training markets. We consider evaluation to be key to the entire
development process and have adopted a Participatory Design approach from the
outset. In the design of the game, we have included a Postgame Analysis utility to
support the collection of empirical evidence on the use of this game.

References
Armarego, J. (2002). Advanced software design: a case in problem-based learning. In Proceedings

of the 15th Conference on Software Engineering Education and Training, February 25–27, 2002
(pp. 44–54). Covington, KY.

Bayliss, J. D. & Strout, S. (2006). Games as a flavour of ‘CS1’. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education SIGCSE �06. ACM Press, NY (pp. 500–
504).

Birkhölzer, T., Oh Navarro, E. & Van der Hoek, A. (2005). Teaching by modeling instead of by
models. In Proceedings of the 6th International Workshop on Software Process Simulation and
Modeling, St. Louis, MO, May 2005.

Chamillard, A. T. (2006). Introductory game creation: no programming required. In Proceedings
of the 37th SIGCSE Technical Symposium on Computer Science Education SIGCSE �06.

Cherry, C. & Macredie, R. D. (1999). The importance of context within information system
design: an assessment of participative design. Requirements Engineering, 4, 103–114.

Chua, A. Y. K. (2005). The design and implementation of a simulation game for teaching knowl-
edge management. Journal of the American Society for Information Science and Technology, 56, 11,
1207–1216.

Connolly, T. M. & Begg, C. E. (2002). Database solutions: a step-by-step approach to building databases
(2nd ed.). Harlow, UK: Addison Wesley Longman.

Connolly, T. M. & Begg, C. E. (2005). Database systems: a practical approach to design, implementa-
tion, and management (4th ed.). Harlow, UK: Addison Wesley Longman.

Connolly, T. M. & Begg, C. E. (2006). A constructivist-based approach to teaching database
analysis and design. Journal of Information Systems Education, 17, 1, 43–54.

Connolly, T. M. & Stansfield, M. H. (in press). From eLearning to games-based eLearning: using
interactive technologies in teaching an IS course. International Journal of Information Technology
and Management.

Connolly, T. M., McLellan, E., Stansfield, M. H., Ramsay J. & Sutherland J. (2004). Applying
computer games concepts to teaching database analysis and design. In Q. Mehdi & N. Gough
(Eds), International Conference on Computer Games, AI, Design and Education, Reading, UK, 8–10
November.

Dantas, A. R., Barros, M. O. & Werner, C. (2004). A simulation-based game for project manage-
ment experiential learning. In F. Maurer & G. Ruhe (Eds), Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE�04), Alberta, Canada, June 2004 (pp.
19–24).

Dantas, A. R., Barros, M. O. & Werner, C. (2005). Simulation models applied to game-based
training for software project managers. In Process Simulation and Modeling Workshop (ProSim),
St. Louis, USA, May 2005 (pp. 110–116).

DeGrace, P. & Hulet Stahl, L. (1998). Wicked problems, righteous solutions: a catalog of modern.
engineering paradigms. Upper Saddle River, NJ: Prentice Hall.

Drappa, A. & Ludewig, J. (2000). Simulation in software engineering training. In Proceedings of
the 22nd international conference on software engineering (pp. 199–208). Limerick, Ireland: ACM
Press.

Ford, C. W. & Minsker, S. (2003). TREEZ—an educational data structures game. Journal of Com-
puting Sciences in Colleges, 18, 6.

426 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

Forman, E. & McPhail, J. (1993). Vygotskian perspectives on children’s collaborative problem-
solving activities. In E. A. Forman, N. Minick & C. Addison Stone (Eds), Contexts for learning.
Sociocultural dynamics in children’s development. Oxford: Oxford University Press.

Hamey, L. G. C. (2003). Teaching secure communication protocols using a game representation.
In Proceedings of the Fifth Australasian Conference on Computing Education.

Illeris, K. (2003). Towards a contemporary and comprehensive theory of learning. International
Journal of Lifelong Learning, 22, 4, 396–406.

Kensing, F. & Blomberg, J. (1998). Participatory design: issues and concerns. Computer Supported
Cooperative Work, 7, 167–185.

Koehler, M. J. & Mishra, P. (2005). Teachers learning technology by design. Journal of Computing
in Teacher Education, 21, Spring, 3.

Kriz, W. C. (2003). Creating effective learning environments and learning organizations through
gaming simulation design. Simulation and Gaming, 34, 4, 495–511.

Lave, J. (1991). Situating learning in communities of practice. Washington, DC: American Psycho-
logical Association.

Lave, J. & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge:
Cambridge University Press.

Leemkuil, H. & de Hoog, R. (2005). Is support really necessary within educational games? In
C. Conati & S. Ramachandran (Eds), Workshop on educational games as intelligent learning envi-
ronments, 12th International Conference on Artificial Intelligence in Education (AIDE 05)
(pp. 21–31), 18–22 July 2005, Amsterdam, Netherlands.

Leemkuil, H., de Jong, T., de Hoog, R. & Christoph, N. (2003). KM QUEST: a collaborative Internet-
based simulation game. Simulation and Gaming, 34, 1, 89–111.

Mandl-Striegnitz, P. (2001). How to successfully use software project simulation for educating
software project managers. In Proceedings of the 31st Frontiers in Education Conference, Nevada,
USA.

Martin, A. (2000). The design and evolution of a simulation/game for teaching information
systems development. Simulation and Gaming, 31, December, 4.

Oh, E. (2001). Teaching software engineering through simulation. In Proceedings of the 2001
Workshop on Education and Training (WET), Santa Barbara, CA, July 2001.

Oh, E. & Van der Hoek, A. (2001a). Challenges in using an economic cost model for software
engineering simulation. In Proceedings of the 3rd International Workshop on Economics-Driven
Software Engineering Research, Toronto, Canada, May 2001 (Reprinted in Projects & Profits, 4, 8,
43–50).

Oh, E. & Van der Hoek, A. (2001b). Adapting game technology to support individual and orga-
nizational learning. In Proceedings of the 13th International Conference on Software Engineering
and Knowledge Engineering, Buenos Aires, Argentina, June 2001.

Oh Navarro, E. & Van der Hoek, A. (2004). SimSE: an interactive simulation game for software
engineering education. In Proceedings of the 7th IASTED International Conference on Computers
and Advanced Technology in Education, Kauai, Hawaii, August 2004.

Oh Navarro, E. & Van der Hoek, A. (2005a). Software process modeling for an educational software
engineering simulation game. Software Process Improvement and Practice, 10, 3, 311–325.

Oh Navarro, E. & Van der Hoek, A. (2005b). Design and evaluation of an educational software
process simulation environment and associated model. In Proceedings of the Eighteenth Confer-
ence on Software Engineering Education and Training, Ottawa, Canada, April 2005.

Oh Navarro, E., Baker, A. & Van der Hoek, A. (2003). Teaching software engineering using
simulation games. In Proceedings of the 2004 International Conference on Simulation in Education,
San Diego, CA, January 2003.

Piaget, J. (1968). Six psychological studies. New York: Vintage Books.
Schön, D. A. (1983). The reflective practitioner: how professionals think in action. New York: Basic

Books.
Schön, D. A. (1987). Educating the reflective practitioner: towards a new design for teaching in the

professions. San Francisco: Jossey-Bass Inc.

Games-based learning within software engineering 427

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.



www.manaraa.com

Shaffer, D. W. (2004a). Pedagogical praxis: the professions as models for postindustrial education.
The Teachers College Record, 106, 7, 1401–1421.

Shaffer, D. W. (2004b). Epistemic frames and islands of expertise: learning from infusion experi-
ences. In Proceedings International Conference of the Learning Sciences, Santa Monica, CA.
Retrieved July 28, 2005, from http://www.education.wisc.edu/edpsych/facstaff/dws/papers/
epistemicframesicls04.pdf

Shaffer, D. W. & Resnick, M. (1999). Thick authenticity: new media and authentic learning.
Journal of Interactive Learning Research, 10, 2, 195–215.

Sharp, H. & Hall, P. (2000). An interactive multimedia software house simulation for postgradu-
ate software engineers. In Proceedings of the 22nd international conference on software engineering,
Limerick, Ireland.

Shaw, K. & Dermoudy, J. (2005). Engendering an empathy for software engineering. In Proceed-
ings of the 7th Australasian Conference on Computing Education—Volume 42 ACE �05.

Sweedyk, E., deLaet, M., Slattery, M. C. & Kuffner, J. (2005). Computer games and CS education:
why and how. In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science
Education SIGCSE �05.

Veronese, G., Barros, M. & Werner, C. (2005). Model support for simulation-based training
games: from behavioral modeling to user interactions. In J. Munch & D. Pfahl (Eds), Software
Process Simulation and Modeling Workshop (ProSim), St Louis, USA, May 2005 (pp. 9–15).

Wang, A. (2005). Web-based interactive courseware for information security. In Proceedings of
the 6th Conference on Information Technology Education SIGITE �05.

Waraich, A. (2004). Using narrative as a motivating device to teach binary arithmetic and logic
gates. In Proceedings of the 9th annual SIGCSE conference on innovation and technology in computer
science education ITiCSE �04 Vol. 36 (p. 3).

428 British Journal of Educational Technology Vol 38 No 3 2007

© 2007 The Authors. Journal compilation © 2007 British Educational Communications and Technology Agency.

http://www.education.wisc.edu/edpsych/facstaff/dws/papers


www.manaraa.com



www.manaraa.com


